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In this paper, we study the solution of a class of stochastic heat equations of convolution type. We give an
explicit solution Xt using two basic tools: the characterization theorem for generalized functions and
the convolution calculus. For positive initial condition f and coefficients processes Vt, Mt, we prove that
the corresponding solution Xt admits an integral representation by a certain measure. Finally, we compute
the tail estimate for the obtained solution and its expectation.
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1. Introduction

In this work, we consider the following class of the Cauchy problems

›
›t
Xtðv; xÞ ¼ aDXtðv; xÞ þ Vtðv; xÞ*Xtðv; xÞ þMtðv; xÞ

X0ðv; xÞ ¼ f ðv; xÞ:

(
ð1Þ

Here a [ Rþ, t [ ½0;1Þ is the time parameter, x [ Rr is the spatial variable, r ¼ 1; 2; . . .

and D ¼
Pr

i¼1ð›
2=›x2

i Þ is the Laplacian in the generalized sense on Rr and v is the stochastic

vector variable in the tempered Schwartz distribution space S0ðR;RdÞ, d [ N. The symbol *

denotes the usual convolution product between generalized functions. This type of problem

was considered by many authors from different point of views, see for example, [5,8,12] and

references therein.

In order to study the proposed Cauchy problem, we assume that the initial condition f

belongs to a generalized functions space F 0
uðN 0Þ (see Section 2 for details and properties)

and the coefficients, Vt, Mt are given F 0
uðN 0Þ-valued generalized processes.
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The paper is organized as follows. In Section 2, we provide the mathematical background

needed to solve the Cauchy problem stated above. We construct the appropriate spaces of test

F uðN 0Þ and the associated generalized functions F 0
uðN 0Þ. Using the Laplace transform we

give the characterization theorem for F 0
uðN 0Þ, cf. Theorem 2.2 below and the basic properties

of convolution calculus need later on. In Section 3, we combine the convolution calculus and

the characterization theorem in order to find the explicit solution to (1). If we further assume

that the coefficients Vt,Mt and the initial condition f are positive distributions, in the sense of

Definition 3.5, we show that the solution is associated to a measure which verifies a certain

integrability condition, cf. (15). Finally, in Section 4 we use a recent result by Ouerdiane and

Privault [9] and apply it to obtain a tail estimate for the positive solution of the Cauchy

problem. More precisely, the measure mXt
which represents the solution verify the inequality

mXt
ð{u [ M0jku; jl . a}Þ # C exp 2b

a

mtjjjpt

� �� �
;

where b is a certain Young function, cf. Theorem 4.2. We also compute the generalized (in

the sense of Remark 4.5) expectation of the solution Xt.

2. Preliminaries

In this section, we introduce the framework need later on. We start with a real Hilbert space

H ¼ L2
d%Rr, L2

d U L2ðR;RdÞ, d; r ¼ 1; 2; . . . with scalar product (·,·) and norm j·j. More

precisely, if ðf ; xÞ ¼ ððf 1; . . . ; f dÞ; ðx1; . . . ; xrÞÞ [ H, then the Hilbertian norm of ( f, x) is

given by:

jðf ; xÞj
2
U

Xd
i¼1

ð
R

f 2i ðuÞduþ
Xr

i¼1

x2i ¼ j f j
2
L2
d
þ jxj

2
:

We denote by Sd U SðR;RdÞ the Schwartz test function space and consider the real nuclear

triplet

M0 ¼ S0d%Rr . H . Sd%Rr ¼ M: ð2Þ

The pairing k·; ·l between M0 and M is given as an extension of the scalar product in H, i.e.

kðv; xÞ; ðj; yÞl U ðv; jÞ þ ðx; yÞ; ðv; xÞ [ H and ðj; yÞ [ M. Since M is a Fréchet nuclear

space, then it can be represented as

M ¼ >
1

n¼0
Sd;n%Rr ¼ >

1

n¼0
Mn;

where Sd;n%Rr is a Hilbert space with norm square given by j·j
2
n þ j·j

2
, see Ref. [4] and

references therein. We will consider the complexification of the triple (2) and denote it by:

N 0 . Z . N ; ð3Þ

i.e. N ¼ Mþ iM and Z ¼ Hþ iH. On M0 we have the standard Gaussian measure g

given by Minlos’ theorem via its characteristic functional by

Cmðj; pÞ ¼

ð
M0

eikðv;xÞ;ðj;pÞldmððv; xÞÞ ¼ exp 2
1

2
ðjjj

2
þ jpj

2
Þ

� �
; ðj; pÞ [ M:
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In order to solve the Cauchy problem (1) we need to introduce an appropriate space of

generalized functions for which we follow closely the construction in Ref. [6]. Let

u ¼ ðu1; u2Þ : R
2
þ ! Rþ, ðt1; t2Þ 7! u1ðt1Þ þ u2ðt2Þ where u1; u2 are two Young functions, i.e.

ui is a continuous, convex, increasing, uið0Þ ¼ 0 and limt!1ðuiðtÞ=tÞ ¼ 1, i ¼ 1; 2. For every

pair m ¼ ðm1;m2Þ where m1;m2 are strictly positive real numbers, we define the Banach

space F u;mðN2nÞ, n [ R by

F u;mðN2nÞ U {f : N2n ! C; entire; j f ju;m;n , 1};

where

j f ju;m;n U sup
z[N2n

j f ðzÞj expð2uðmjzj2nÞÞ

and for each z ¼ ðv; xÞ we have uðmjzj2nÞ U u1ðm1jvj2nÞ þ u2ðm2jxjÞ. Here jvj2n is the

norm in the dual space S0d;n V Sd;2n. Now we consider as test function space as the space of

entire functions on N0 of ðu1; u2Þ-exponential growth and minimal type given by

F uðN 0Þ ¼ >
m[ R*

þð Þ
2
;n[N

F u;mðN2nÞ;

endowed with the projective limit topology. Here R*
þ U�0;1½ and N U {0; 1; 2; . . . }. We

would like to construct the triplet of the complex Hilbert space L2ðM0;mÞ by F uðN 0Þ. To this

end we need another assumption on the pair of Young functions ðu1; u2Þ. Namely,

limt!1ðuiðtÞ=t
2Þ , 1, i ¼ 1; 2. This is enough to obtain the following Gelfand triplet

F 0
uðN 0Þ . L2ðM0;mÞ . F uðN 0Þ; ð4Þ

where F 0
uðN 0Þ is the topological dual of F uðN 0Þ with respect to L2ðM0;mÞ. The space

F 0
uðN 0Þ endowed with the inductive limit topology which coincides with the strong topology

since F uðN 0Þ is a nuclear space, see Ref. [3] for more details on this subject. We denote the

duality between F 0
uðN 0Þ and F uðN 0Þ by R·; ·S which is the extension of the inner product in

L2ðM0; gÞ.

Remark 2.1. For every entire function f : N 0 ! C we have the Taylor expansion

f ðzÞ ¼
X
k[N2

kz^k; f kl;

where z^k [ N
0 ^̂ k

and ^̂ denotes the symmetric tensor product. This allowed us to identify

each entire function f with the corresponding Taylor coefficients ~f ¼ ðf kÞk[N2 . The mapping

f 7! Tðf Þ ¼ ~f is called Taylor series map.

Using the mapping T we can construct a topological isomorphism between the test

function space F uðN 0Þ and the formal power series space FuðN Þ defined by

FuðN Þ ¼ >
m[ R*

þð Þ
2
;n[N

Fu;mðN nÞ; ð5Þ

where

Fu;mðN nÞ U ~f ¼ ðf kÞk[N2 ; f k [ N
^̂ k
n k ~f j

2
U

X
k[N2

u22
k m2kj f kj

2
n , 1

( )
;

Tail estimation 409



here k ¼ ðk1; k2Þ and u22
k ¼ u22

1;k1
u22

2;k2
with

ui;ki U inf
u.0

expðuiðuÞÞ

uki
; i ¼ 1; 2:

In the case where uðxÞ ¼ x2, then Fu;1ðN nÞ is nothing than the usual Bosonic Fock space

associated to N n, see Ref. [4] for more details.

In applications it is very important to have the characterization of generalized functions

F 0
uðN 0Þ. This is stated in Theorem 2.2 with the help of the Laplace transform. Therefore, let

us first define the Laplace transform of an element in F 0
uðN 0Þ. For every fixed element

ðj; pÞ [ N we define the exponential function expððj; pÞÞ by:

N 0 ] ðv; xÞ 7! expðkv; jlþ ðp; xÞÞ: ð6Þ

It is not hard to verify that for every element ðj; pÞ [ N , expððj; pÞÞ [ F uðN 0Þ. With the help

of this function we can define the Laplace transform L of a generalized function F [

F 0
uðN 0Þ by

F̂ðj; pÞ U ðLFÞðj; pÞ U RF; exp ððj; pÞÞS: ð7Þ

The Laplace transform is well defined because expððj; pÞÞ is a test function. In order to obtain

the characterization theorem we need to introduce another space of entire functions on N
with u*-exponential growth and arbitrary type, where u* is another Young function (called

polar functions associated to u) defined by u*ðx1; x2Þ U u*1ðx1Þ þ u*2ðx2Þ and

u*
i ðxiÞ U sup

t.0

ðtxi 2 uiðtÞÞ; i ¼ 1; 2:

The next characterization theorem is essentially based on the topological dual of the

formal power series space Fu (N) defined in equation (5) and the inverse Taylor series map

T 21, see Ref. [2] or [6] for details. In the white noise setting this theorem is known as

Potthoff–Streit characterization theorem, see Ref. [7] for details and historical remarks.

Theorem 2.2. The Laplace transform is a topological isomorphism between F 0
uðN 0Þ and the

space Gu * ðN Þ which is defined by:

Gu *ðN Þ ¼ <
m[ R*

þð Þ
2
;n[N

Gu *;mðN nÞ;

and Gu *;mðN nÞ are Banach space of entire functions g on N n with the following u-

exponential growth condition

jgðj; pÞj # k expðu*1ðm1jjjnÞ þ u*2ðm2jpjÞÞ; ðj; pÞ [ N n;

where k;m1and m2 are positive constants.

It is well known that in infinite dimensional complex analysis the convolution operator on

a general function space F is defined as a continuous operator which commutes with the

translation operator. This notion generalizes the differential equations with constant

coefficients in finite dimensional case. If we consider the space of test functions F uðN 0Þ, then

we can show that each convolution operator is associated with a generalized function from

F 0
uðN 0Þ and vice versa.
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Let us define the convolution between a generalized and a test function on F0
u(N0) and

Fu(N0), respectively. Let F [ F 0
uðN 0Þ and w [ F uðN 0Þ be given, then the convolution F*w

is defined by:

ðF*wÞðv; xÞ U RF; t2ðv;xÞwS;

where t2ðv;xÞ is the translation operator, i.e.

ðt2ðv;xÞwÞðh; yÞ U wðvþ h; xþ yÞ:

It is not hard to see that F*w is an element of F uðN 0Þ. Note that the dual pairing between

F [ F 0
uðN 0Þ and w [ F uðN 0Þ is given in terms of the convolution product of F and f

applied at (0, 0), i.e. ðF*wÞð0; 0Þ ¼ RF;wS.
We can generalize the above convolution product to generalized functions as follows. Let

F;C [ F 0
uðN 0Þ be given. Then F*C is defined as

RF*C;wS U RF;C*wS;;w [ F uðN 0Þ: ð8Þ

This definition of convolution product for generalized functions will be used on Section 3 in

order to solve the stochastic heat equation. We have the following connection between the

Laplace transform and the convolution product. The simple proof can be found in Ref. [11].

Proposition 2.3. Let ðj; pÞ [ N be given and consider the exponential function expððj; pÞÞ

defined on equation (6).

1. Then for every F [ F 0
uðN 0Þ we have

F*expððj; pÞÞ ¼ ðLFÞðj; pÞexpððj; pÞÞ:

2. For every generalized functions F;C [ F 0
uðN 0Þ

LðF*CÞ ¼ LFLC; ð9Þ

and equality (9) may be taken as an alternative definition of the convolution product

between two generalized functions.

We also need to handle functionals K : F 0
uðN 0Þ! F 0

lðN 0Þ for certain Young functions u, l

given.

Let g : C! C be an entire function verifying the following growth condition:

jgðzÞj # C expðgðmjzjÞÞ, where C;m . 0 and g is a Young function which not necessary

satisfies the condition limx!1ðgðxÞ=xÞ ¼ 1. Then for each F [ F 0
uðN 0Þ the convolution

functional g*ðFÞ defined by:

Lðg*ðFÞÞ ¼ gðLFÞ

belongs to the space F 0
lðN 0Þ, where l ¼ ðg+eu

*
Þ*, see Ref. [1] for the proof.

In particular if gðzÞ ¼ expðzÞ and gðxÞ ¼ x, then the convolution exponential

exp*ðFÞ ¼
X1
n¼0

1

n!
ðF*Þn ð10Þ

is a well defined element in F 0
lðN 0Þ, where l ¼ ðeu

*
Þ*. The convolution exponential just

defined will be the main object in solving the stochastic differential equation in equation (1),

cf. (13).
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3. Stochastic heat equation of convolution type

A one parameter generalized stochastic process with values in F 0
uðN 0Þ is a family of

distributions {Ft; t [ I} , F 0
uðN 0Þ, where I is an interval from R. Without loss generality

we may assume that 0 [ I. The process Ft is said to be continuous if the map t 7! Ft is

continuous. In order to introduce generalized stochastic integrals, we need the following

result proved in Ref. [10].

Proposition 3.1. Let ðFnÞn[N be a sequence of generalized functions in F 0
uðN 0Þ. Then the

following two conditions are equivalent:

1. The sequence ðFnÞn[N converges in F 0
uðN 0Þ strongly.

2. The sequence ðF̂n ¼ LðFnÞÞn[N of Laplace transform of ðFnÞn[N satisfies the following

two conditions:

(a) There exists p [ N and m [ R*
þ

� �2
such that the sequence ðF̂nÞn[N belongs to

Gu *;mðN pÞ and is bounded in this Banach space.

(b) For every point z [ N ; the sequence of complex numbers ðF̂nðzÞÞ
1

n¼0 converges.

Let {Ft}t[I be a continuous F 0
uðN 0Þ-process and put

Fn ¼
t

n

Xn21

k¼0

Fðtk=nÞ; n [ N* U Nn{0}; t [ I:

It is easy to prove that the sequence ðF̂nÞ is bounded in Gu *ðN Þ and for every j [ N , p [ Cr

ðF̂nðj; pÞÞn converges to
Ð t

0
F̂sðj; pÞds. Thus, we conclude by Proposition 3.1 that (Fn)

converges in F 0
uðN 0Þ. We denote its limit by

ðt
0

Fsds U lim
n!1

Fn in F 0
uðN 0Þ: ð11Þ

The result of the following proposition is widely used in this remaining of this paper, the

proof is given in Ref. [11].

Proposition 3.2. For a given continuous generalized stochastic process Xt we define the

generalized function

Ytðx;vÞ ¼

ðt
0

Xsðx;vÞds [ F 0
uðN 0Þ

by

L
ðt

0

Xsðx;vÞds

� �
ðj; pÞ U

ðt
0

LXsðp; jÞds:

Moreover, the generalized stochastic process Ytðx;vÞ is differentiable in F 0
uðN 0Þ and we

have ð›=›tÞYtðx;vÞ ¼ Xtðx;vÞ.

H. Querdiane and J. L. da Silva412



We are now ready to solve the Cauchy problem in equation (1). Let us recall again this

problem for the reader convenience. Let f be a given generalized function in F 0
uðN 0Þ and Vt,

Mt given F 0
uðN 0Þ-valued continuous generalized stochastic processes. Consider the

following stochastic differential equation with initial condition f and coefficients Vt, Mt

›
›t
Xtðv; xÞ ¼ aDXtðv; xÞ þ Vtðv; xÞ*Xtðv; xÞ þMtðv; xÞ

X0ðv; xÞ ¼ f ðv; xÞ;

(
ð12Þ

where a is a positive constant and D is the Laplacian in the generalized sense with respect to

the spacial variable x [ Rr.

Theorem 3.3. The Cauchy problem (12) has a unique solution Xt which is a generalized

F *
bðN 0Þ-valued stochastic process, where the Young function b is given by b ¼ ðeu

*
Þ*.

Moreover, the solution Xt is given explicitly by

Xtðv; xÞ ¼ f ðv; xÞ*exp*
ðt
0

Vsðv; xÞds

� �
*g2at

þ

ðt
0

exp*
ðt
s

Vuðv; xÞdu

� �
*g2aðt2sÞ*Msds:

ð13Þ

where g2at is the centered Gaussian measure on Rr with variance 2at.

Proof. To obtain the solution (13) at first we apply the Laplace transform to equation (12)

which reduces the problem to a ordinary differential equation. Then the result follows by the

characterization Theorem 2.2. A

Remark 3.4. For a ¼ 0 the Cauchy problem (12) reduces to

›
›t
Xtðv; xÞ ¼ Vtðv; xÞ*Xtðv; xÞ þMtðv; xÞ

X0ðv; xÞ ¼ f ðv; xÞ:

(
ð14Þ

Taking into account that g2at ! d0, a! 0, where d0 denotes the Dirac measure at 0 which is

the unit element for the convolution product, then the solution (13) reduces to

Xt ¼ f ðv; xÞ*exp*
ðt
0

Vsðv; xÞds

� �
þ

ðt
0

exp*
ðt
s

Vuðv; xÞdu

� �
*Msds:

The problem (14) was studied in other works, see for example, Ref. [1]. Our solution

coincides with their solution.

In the next section, we also need the notion of positive distributions. Therefore, we recall

this notion and the connection between positive distributions and measures as well its

characterization.

Definition 3.5. 1. Let F uðN 0Þþ denote the cone of positive test functions, i.e. w [ F uðN 0Þþ
if wðuþ i0Þ $ 0 for all u [ M0.
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2. The space F 0
uðN 0Þþ of positive distributions is a subset of F [ 0F uðN 0Þ such that

RF;wS $ 0, for all w [ F uðN 0Þþ.

The following theorem gives the integral representation for positive distributions as

measures and their characterization. For details we refer to Ref. [10] and references therein.

Theorem 3.6. Let F [ F 0
uðN 0Þþ be a given positive distribution. Then there exists a unique

Radon measure mF on M0 such that

RF;wS ¼

ð
M0

wðuþ i0ÞdmFðuÞ; w [ F uðN 0Þ:

Conversely, for each finite positive Borel measure m on M0, m represents a positive

distribution in F 0
uðN 0Þþ if and only if there exists p;m . 0 such that m is supported byM2p

and ð
M2p

euðmjuj2pÞdmðuÞ , 1:

Lemma 3.7. Let F1;F2 [ F 0
uðN 0Þþ be positive distributions. Then F1*F2 and e*F1 are

positive distributions.

Proof. Using equality (8) it is sufficient to show that the convolution product between a

generalized function and a positive test function is a positive test function. In fact, if

w [ F uðN 0Þþ then

ðF2*wÞðuþ i0Þ U kF2; t2uwl; u [ M0

and the result follows since ðt2uwÞðvþ i0Þ U wðuþ vÞ $ 0, for all u; v [ M0. As a

consequence we have F*n
1 [ F 0

uðN 0Þþ, n [ N. Now we use equality (10) to derive the

positivity of e*F1 . A

As a corollary of this lemma we give sufficient conditions on f, Vt and Mt such that the

solution (13) of the Cauchy problem (12) is a positive generalized function.

Corollary 3.8. Suppose that f ;Vt;Mt [ F 0
uðN 0Þþ for any t [ ½0;1Þ. Then the solution

(13) is a positive distribution and thus there exists a unique Radon measure mXt
associated to

Xt, i.e.

RXt;wS ¼

ð
M0

wðuÞdmXt
ðuÞ; w [ FbðN 0Þ:

Moreover, there exist m; p . 0 such that mXt
satisfies the integrability conditionð

M2p

ebðmjuj2pÞdmXt
ðuÞ , 1; b ¼ ðeu

*

Þ*: ð15Þ
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Proof. First we notice that
Ð t

0
Vsðv; xÞds is a positive distribution which follows directly from

the definition (11) and Proposition 3.1. The result follows using the associativity of the

convolution product, the previous Lemma and Theorem 3.6. A

4. Tail estimates and expectation of the solution

In this section, we will use the previous results in order to obtain the tail estimate for the

solution Xt represented by the measure mXt
in Corollary 3.8. We also compute the generalized

expectation of Xt, cf. Theorem 4.4.

At first we state an independent result for positive generalized functions, see Theorem 2.1

in Ref. [9].

Theorem 4.1. Let F [ F 0
uðN 0Þþ be a given positive distribution and mF the associated

measure. Consider for any j [ M, a [ R the half-plane Aj;a in M0 defined by

Aj;a U {u [ M0jku; jl . a}:

Then there exists constants m . 0; p [ N such that

mFðAj;aÞ # C exp 2u
a

mjjjp

� �� �
; ð16Þ

where C ¼ jF̂ju;m;p.

Theorem 4.2. Suppose that f ;Vt;Mt [ F 0
uðN 0Þþ for any t [ ½0;1Þ. Then there exits a

unique positive Radon measure mXt
on M0 associated to the solution Xt of the Cauchy

problem (12) given in equation (13) such that

mXt
ðAj;aÞ # Ctexp 2b

a

mtjjjpt

� �� �
; ð17Þ

where b ¼ ðeu
*
Þ* and certain Ct;mt; pt . 0, t [ ½0;1Þ.

Proof. It is clear that the solution Xt in equation (13) belongs to F 0
bðN 0Þþ using Lemma 3.7.

The existence and uniqueness of the Radon measure mXt
onM0 associated to Xt follows from

Theorem 3.6. Finally, the estimate (17) is a consequence of the inequality (16) with u

replaced by b. A

Lemma 4.3. Let F1;F2 [ F 0
uðN 0Þ be given and 1 [ F uðN 0Þ the constant test function

identically equal to 1. Then we have the following equalities

RF1*F2; 1S ¼ RF1; 1SRF2; 1S; Re*F1 ; 1S ¼ eRF1;1S:

Proof. In fact, we have RF1*F2; 1S U RF1;F2*1S and we notice that

ðF2*1ÞðuÞ U RF2; t2u1S ¼ RF2; 1S:
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It follows from this equality that kF*n
1 ; 1l ¼ RF1; 1Sn. The second equality of the Lemma is a

consequence of equation (10). A

Theorem 4.4. The solution of the Cauchy problem Xt in equation (13) satisfies the following

equality:

RXt; 1S ¼ Rf ;þ1Sexp
ðt
0

RVs; 1Sds
� �

þ

ðt
0

exp

ðt
s

RVu; 1Sdu
� �

RMs; 1Sds:

Proof. The equality is a consequence of the previous Lemma, the associativity of the

convolution product and the fact that kg2at; 1l ¼ 1. A

Remark 4.5. The bilinear dual pairing RXt; 1S may be interpreted as a generalized expectation

of Xt, denoted by EmðXtÞ, in connection with the triple (4). In fact, if w [ F uðN 0Þ is a random

variable on the probability space ðM0;BðM0Þ;mÞ, then its expectation is given by:

EmðwÞ ¼

ð
M0

wðuÞdmðuÞ ¼ ððw; 1ÞÞL 2ðM0;mÞ:
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