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Abstract—In this paper we give a probabilistic representation for the solution of the heat equation

of convolution type with a generalized function f as initial condition. The method uses a combination

between convolution calculus and the generalized stochastic calculus, namely Itô’s formula for gen-

eralized functions. Finally, generalization to the stochastic heat equation with a gradient term and

generalized coefficients is presented.

1. INTRODUCTION

The purpose of this paper is to give a probabilistic representation of the stochastic
heat equation of convolution type. These equations are too singular to be solved in the
traditional framework and as a result the solutions are located in an suitable generalized
function space. As a tool we use the convolution calculus and the generalized stochastic
calculus, namely the Itô formula for generalized functions, cf. Theorem 3.4 below. We
are concerned with equations of the following type

∂

∂t
Ut =

1
2
∆Ut + Vt ∗ Ut, U0 = f, (1)

and
∂

∂t
Xt =

1
2
∆Xt + Ht ∗ ∇Xt, X0 = f, (2)

where t ∈ [0, T ] and the coefficients Vt,Ht as well as the initial condition f are gener-
alized functions. The explicit solutions are given in terms of the convolution product ∗
(see for example [OS02], [OS04]) and then we show that they are represented in terms
of the expectation of a generalized Brownian functional. More precisely, they have the
form

Ut = E x

(
τBt

(
f ∗ exp∗

(∫ t

0

Vsds

)))
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and

Xt = E P̃ x

(
(τ(0,Ys)f) ∗ exp∗

(∫ t

0

HsdYs −
1
2

∫ t

0

H∗2
s ds

))
,

where Bt, t ∈ [0, T ] is a Brownian motion starting at x ∈ Rr and Yt, t ∈ [0, T ] is
also Brownian motion with probability law P̃ x starting at x. Such kind of problems
were analyzed by several authors from different point of view under certain conditions
on the initial data f and the coefficients Vt and Ht. We would like to mention the
work of Rajeev and Thangavelu [RT03] where the authors solved the deterministic heat
equation with Vt = 0 and f a tempered distribution. Other approaches as in [BDP97],
[PVW98], [HØUZ96] and others have strong restriction on the initial condition f , such
as continuous and bounded.

2. PRELIMINARIES

2.1. Function spaces Fθ(N ′) and Gθ(N )

In this section we will introduce the framework which is necessary later on. We start
with a real Hilbert space H = L2(R, Rd) ⊗ Rr, d, r ∈ N with scalar product (·, ·) and
norm | · |. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈ H, then the Hilbertian
norm of (f, x) is given by

|(f, x)|2 :=
d∑

i=1

∫
R

f2
i (u)du +

r∑
i=1

x2
i = |f |2L2(R,Rd) + |x|2Rr .

Let us consider the real nuclear triplet

M′ = S′(R, Rd)⊗ Rr ⊃ H ⊃ S(R, Rd)⊗ Rr = M. (3)

The pairing 〈·, ·〉 between M′ and M is given in terms of the scalar product in H, i.e.,
〈(ω, x), (ξ, y)〉 := (ω, ξ)L2(R,Rd) + (x, y)Rr , (ω, x) ∈ M′ and (ξ, y) ∈ M. Since M is a
Fréchet nuclear space, then it can be represented as

M =
∞⋂

n=0

Sn(R, Rd)⊗ Rr =
∞⋂

n=0

Mn,

where Sn(R, Rd) ⊗ Rr is a Hilbert space with norm square given by | · |2n + | · |2Rr . We
will consider the complexification of the triple (3) and denote it by

N ′ ⊃ Z ⊃ N , (4)

where N = M+ iM and Z = H+ iH. On M′ we have the standard Gaussian measure
µ given by Minlos’ theorem via its characteristic functional for every (ξ, p) ∈M by

Cµ(ξ, p) =
∫
M′

exp(i〈(ω, x), (ξ, p)〉)dµ((ω, x)) = exp(−1
2
(|ξ|2 + |p|2)).

In order to solve the Cauchy problem (1) and (2) we need to introduce an appropriate
space of generalized functions for which we follow closely the construction in [JOO02].

Let ϕ : R+ −→ R+ be a continuous, convex, increasing function satisfying

lim
t→∞

ϕ(t)
t

= ∞ and ϕ(0) = 0.
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Such a function is called a Young function. For a Young function ϕ we define

ϕ∗(x) := sup
t≥0

{tx− ϕ(t)}.

This is called the polar function associated to ϕ. It is known that ϕ∗ is again a Young
function and (ϕ∗)∗ = ϕ, see [KR61] for more details and general results.

Given a Banach space B, we denote by H(B) the space pf all entire functions on B,
i.e., of all continuous functions f : B −→ C such that for every x, y ∈ B the map

C 3 z 7→ f(x + zy) ∈ C

is an entire function on C.
Let θ = (θ1, θ2) be a fixed pair of Young functions and m = (m1,m2) a given pair

of strictly positive real numbers (m ∈ (R∗+)2 for short). We define the Banach space
Fθ,m(N−n), n ∈ N0 := {0, 1, 2, . . .} by

Fθ,m(N−n) := {f ∈ H(N−n); |f |θ,m,n < ∞},

where
|f |θ,m,n := sup

(ω,x)∈N−n

|f(z)| exp(−θ1(m1|ω|−n)− θ2(m2|x|)).

The Hilbert norm |ω|−n is the norm in the dual space S′n(R, Rd) =: S−n(R; Rd). For
short in the following we denote elements of N−n by z and θ(m|z|−n) := θ1(m1|ω|−n)+
θ2(m2|x|).

Then {Fθ,m(N−n), m ∈ (R∗+)2, n ∈ N0} becomes a projective system of Banach
spaces. We consider as test function space

Fθ(N ′) :=
⋂

m∈(R∗+)2,n∈N0

Fθ,m(N−n)

endowed with the projective limit topology. Fθ(N ′) is called the space of entire functions
on N ′ of θ-exponential growth of minimal type.

On the other hand, {Fθ,m(Nn), m ∈ (R∗+)2, n ∈ N0} becomes an inductive system
of Banach spaces. Then the space of entire functions on N with θ-exponential growth
of finite type is defined by

Gθ(N ) :=
⋃

m∈(R∗+)2,n∈N0

Fθ,m(Nn)

endowed with the inductive limit topology.

Remark 2.1 By definition a function f ∈ Fθ(N ′) and φ ∈ Gθ(N ) admit the Taylor
expansions

f(z) =
∑
k∈N2

0

〈z⊗k, fk〉, z ∈ N ′, fk =
1
k!

f (k)(0) ∈ N ⊗̂k (5)

g(u) =
∑
k∈N2

0

〈u⊗k, gk〉, u ∈ N , gk ∈ N ′⊗̂k.

The Taylor series map T (at zero) associates to any entire function the sequence of
coefficients. For example, the Taylor series map of f given in (5) is defined by T f =
~f = (fk)k∈N2

0
.
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2.2. Weighted Fock spaces Fθ,m(Np) and Gθ,m(N−p)

In order to characterize Fθ(N ′) and Gθ(N ) in terms of the Taylor expansions, we
introduce weighted Fock spaces. Suppose a pair k = (k1, k2) ∈ N2

0 and n ∈ N0 are
given. First we define

θi,ki := inf
t>0

eθi(t)

tki
, i = 1, 2.

For ~f = (fk)k∈N2
0

with fk ∈ N ⊗̂k
n we put

|~f |2Fθ,m(Nn) :=
∑
k∈N2

0

θ−2
k m−k|fk|2n

where θ−2
k := θ−2

1,k1
θ−2
2,k2

. Define

Fθ,m(Nn) := {~f = (fk)k∈N0 , fk ∈ N ⊗̂k
n ; |~f |2Fθ,m(Nn) < ∞}

and
Fθ(N ) =

⋂
m∈(R∗+)2,n∈N0

Fθ,m(Nn)

endowed with the projective limit topology. In the case where θ(t) = t2, then Fθ,1(Nn)
is nothing than the usual Bosonic Fock space associated to Nn, see [RS75] for more
details.

Theorem 2.2 (cf. [JOO02, Thm 2]) The Taylor series map

T : Fθ(N ′) −→ Fθ(N ), f 7→ ~f = (fk)k∈N2
0

is a topological isomorphism.

Remark 2.3 The space Fθ(N ) is a nuclear Fréchet space which is reflexive and thus
Fθ(N ′) is also a nuclear Fréchet reflexive space.

Similarly, for any m ∈ (R∗+)2 and n ∈ N0 we define the Hilbert space

Gθ,m(N−n) = {~φ = (φk)k∈N2
0
; |~φ|2Gθ,m(N−n) < ∞},

where
|~φ|2Gθ,m(N−n) :=

∑
k∈N2

0

(k!θk)2mk|φk|2−n.

Then {Gθ,m(N−n), m ∈ (R∗+)2, n ∈ N0} becomes an inductive system of Hilbert spaces
and we put

Gθ(N ′) =
⋃

m∈(R∗+)2,n∈N0

Gθ,m(N−n)

endowed with the inductive limit topology.
By general duality theory the topological dual of Fθ(N ) is identified with the space

Gθ(N ′) with the dual pairing:

〈〈~φ, ~f〉〉 =
∑
k∈N2

0

k!〈φk, fk〉, ~φ ∈ Gθ(N ′), ~f ∈ Fθ(N ).

Finally, we obtain the following:
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Theorem 2.4 (cf. [JOO02, Thm 4]) The Taylor series map T yields a topological
isomorphism

T : Gθ∗(N ) −→ Gθ(N ′), φ 7→ ~φ = (φk)k∈N2
0
.

We would like to construct the triplet of the complex Hilbert space L2(M′, µ) by
Fθ(N ′). To this end we need to add a condition on the pair of Young functions θ =
(θ1, θ2). Namely,

L := lim sup
t→∞

θi(t)
t2

< ∞, i = 1, 2.

This is enough to obtain the following Gelfand triplet

F ′θ(N ′) ⊃ L2(M′, µ) ⊃ Fθ(N ′), (6)

where F ′θ(N ′) is the topological dual of Fθ(N ′) with respect to L2(M′, µ) endowed with
the inductive limit topology which coincides with the strong topology since Fθ(N ′) is
a nuclear space, see [GV68] for more details on this subject. We denote the duality
between F ′θ(N ′) and Fθ(N ′) by 〈〈·, ·〉〉 which is the extension of the inner product in
L2(M′, µ).

The goal is to characterize the generalized functions from F ′θ(N ′). This will be done
in Theorem 2.5 with the help of the Laplace transform. Therefore, let us first define
the Laplace transform of an element in F ′θ(N ′). For every fixed element (ξ, p) ∈ N we
define the exponential function exp((ξ, p)) by

N ′ 3 (ω, x) 7→ exp(〈ω, ξ〉+ (p, x)). (7)

It easy to verify that for every element (ξ, p) ∈ N exp((ξ, p)) ∈ Fθ(N ′). Then for every
Φ ∈ F ′θ(N ′) the Laplace transform of Φ is defined by

Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉. (8)

Since the dual of Fθ(N ) is Gθ(N ′), we deduce from Theorem 2.2 and Theorem 2.4
the following diagram

F ′θ(N ′) L //

(T ∗)−1

��

Gθ∗(N )

T
��

F ′
θ(N ) // Gθ(N ′)

Hence, for any Φ ∈ F ′θ(N ′) we have

(LΦ)(ξ, p) = 〈〈Φ, exp((ξ, p))〉〉
= 〈〈~Φ, ~exp((ξ, p))〉〉

=
∑
k∈N2

0

k!
〈

~Φ,
(ξ, p)⊗k!

k!

〉
= (T ~Φ)(ξ, p).

The action of a generalized function Φ ∈ F ′θ(N ′) on a test function ϕ ∈ Fθ(N ′) is
given by

〈〈Φ, ϕ〉〉 = 〈〈~Φ, ~ϕ〉〉,
where ~Φ = (T ∗)−1Φ and ~ϕ := T ϕ, [JOO02] for more details.

Thus we have the following characterization theorem:
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Theorem 2.5 The Laplace transform is a topological isomorphism:

L : F ′θ(N ′) −→ Gθ∗(N ).

In the white noise analysis framework Theorem 2.5 is known as Potthoff-Streit char-
acterization theorem, see [PS91] [KLP+96] for details and historical remarks.

Remark 2.6 In Section 3 we will define the stochastic integral of a F ′θ(N ′)-valued
process. We shall use the theory of stochastic integration on Hilbert spaces developed
in [Mét82]. We have in mind the following considerations. For any Φ ∈ F ′θ(N ′) there
exists m ∈ (R∗+)2 and n ∈ N0 such that T ◦LΦ belongs to the Hilbert space Gθ,m(N−n).

2.3. The Convolution Product ∗

Now let us define the convolution between a generalized and a test function from F ′θ(N ′)
and Fθ(N ′), respectively. Let Φ ∈ F ′θ(N ′) and ϕ ∈ Fθ(N ′) be given, then the convolu-
tion Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,

with τ−(ω,x)ϕ ∈ Fθ(N ′) being the translation operator of ϕ, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

It can be proved that Φ ∗ ϕ is an element of Fθ(N ′), cf. [GHKO00, Proposition 2.3].
Note that the dual pairing between Φ ∈ F ′θ(N ′) and ϕ ∈ Fθ(N ′) is given in terms of
the convolution product of Φ and ϕ applied at (0, 0), i.e., 〈〈Φ, ϕ〉〉 = (Φ ∗ ϕ)(0, 0).

We can generalize the above convolution product for generalized functions as follows.
Let Φ,Ψ ∈ F ′θ(N ′) be given. Then Φ ∗Ψ is defined as

〈〈Φ ∗Ψ, ϕ〉〉 := 〈〈Φ,Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N ′). (9)

In particular, for Φ ∈ F ′θ(N ′) and (ξ, p) ∈ N , we have

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)).

We then have
L(Φ ∗Ψ) = LΦLΨ. (10)

For every generalized function Φ ∈ F ′θ(N ′) we define exp∗ Φ, the convolution expo-
nential functional of Φ, by

L(exp∗ Φ) = exp(LΦ),

which is an element of the space F ′
(eθ∗ )∗

(N ′).

Remark 2.7 We remark that the Laplace transform may be written as follows

(LΦ)(ξ, p) = 〈〈Φ, exp((ξ, p))〉〉
= 〈〈Φ, exp(ξ)⊗ exp(p)〉〉
= (L1(L2Φ)(p))(ξ),
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where L1 is the Laplace transform with respect to the first variable and L2 with respect
to the second one. In particular, if Φ = Φ1 ⊗ Φ2 is a generalized function, with Φ1 ∈
F ′θ1

(S′d.C) ( S′d,C is the complexification of S′(R, Rd)) and Φ2 ∈ F ′θ2
(Cr), then we have

(LΦ1 ⊗ Φ2)(ξ, p) = 〈〈Φ1 ⊗ Φ2, exp((ξ, p))〉〉
= 〈〈Φ1 ⊗ Φ2, exp(ξ)⊗ exp(p)〉〉
= (L1Φ1)(ξ)(L2Φ2)(p).

If 1 is the function such that 1(ω) = 1, ∀ω ∈ S′d.C, then every element V ∈ F ′θ2
(Cr)

can be identified with V = 1 ⊗ V and moreover (LV )(ξ, p) = (L2V )(p). The same
reasoning can be applied to the convolution product, i.e., the convolution product V ∗f ,
f ∈ F ′θ2

(Cr) coincides with the usual convolution product with respect to the spatial
variable.

3. Generalized stochastic calculus

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space with a filtration (Ft)t≥0 satisfying
the usual conditions. Let (Bt)t≥0 be a Rd-valued Ft-Brownian motion with B0 = 0
P -a.s.

Later on, we need to define two types of integrals, deterministic and stochastic in-
tegrals of F ′θ(N ′)-valued process. For the stochastic integrals we will use the theory of
stochastic integration in Hilbert spaces developed in [DPZ92] and [Mét82]. Note that
when Yt is an H-valued process, for a Hilbert space H, then Yt can be considered as an
L(Rd, Rd ⊗H)-valued process, where L(·, ·) is the set of bounded linear operators and
Rd ⊗H is the tensor product of Hilbert spaces.

For any (ω, x) ∈ N ′, Φ ∈ F ′θ(N ′) we define τ(ω,x)Φ ∈ F ′θ(N ′) by

〈〈τ(ω,x)Φ, ϕ〉〉 = 〈〈Φ, τ−(ω,x)ϕ〉〉, ϕ ∈ Fθ(N ′).

For short we will denote τ(0,x) by τx for any x ∈ Rr.

Proposition 3.1 Let Φ ∈ F ′θ(Cr) and g : Rr −→ Gθ(Cr), g(x) := (T ◦ L)(τxΦ). Then
there exists m > 0 such that g : Rr −→ Gθ,m(Cr) is twice continuously differentiable
and

g′(x)(h) = −
r∑

i=1

(T ◦ L)(∂iτxΦ)hi (11)

g′′(x)(h⊗ h) =
r∑

i,j=1

(T ◦ L)(∂2
ijτxΦ)hihj . (12)

Proof. If Φ ∈ F ′θ(Cr), then τxΦ ∈ F ′θ(Cr). Since T ◦ L is a topological isomorphism
between F ′θ(Cr) and Gθ(Cr), there exist m > 0 such that g(x) belongs to the Hilbert
space Gθ,m(Cr) for any x ∈ Rr. In order to show the differentiability of g it is enough
to obtain the following estimate

|g(x + h)− g(x) + T ◦ L
r∑

i=1

(∂iτxΦ)hi|Gθ,m(Cr) ≤ C(θ, m, r)|g|Gθ,m′ (Cr)|h|2,
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for a certain m′ > 0. Since T is an isomorphism between Gθ∗(Cr) and Gθ(Cr) it is
sufficient to show that

|L(τx+hΦ)− L(τxΦ) + L
r∑

i=1

(∂iτxΦ)hi|Gθ∗,m(Cr) ≤ C(θ, m, r)|L(τxΦ)|Gθ∗,m′ (Cr)|h|2.

On one hand for p ∈ Cr we have (LτxΦ)(p) = (LΦ)(p)e(p,x). On the other hand, the
mapping e(p,·) : Rr −→ C, x 7→ e(p,x) is differentiable and we have the following simple
estimate∣∣∣∣∣

(
L(τx+hΦ)− L(τxΦ) + L

r∑
i=1

(∂iτxΦ)hi

)
(p)

∣∣∣∣∣ ≤ |L(τxΦ)(p)||p|2|h|2e|p||h|.

Since the Young function θ is such that lim supu→∞
θ(u)
u2 < ∞ which is equivalent to

(see for example [KR61])

lim inf
u→∞

θ∗(u)
u2

> 0.

Hence there exist u0 > 0 and ε > 0 such that θ∗(u) ≥ εu2 for u ≥ u0. We can choose
α > 0 and m′ with m > m′ > 0 such that |h||p| ≤ |h|2/α + α|p|2 and

|p|2e|h||p|e−θ∗(m|p|) ≤ C(θ, m, r)e|h|
2/αe−θ∗(m′|p|).

Therefore, we arrive at the following estimate

|L(τx+hΦ)−L(τxΦ)+L
r∑

i=1

(∂iτxΦ)hi|Gθ∗,m(Cr) ≤ C(θ, m, r)e|h|
2/α|L(τxΦ)|Gθ∗,m′ (Cr)|h|2

which proves (11). The second derivative (12) is proved similarly.

Proposition 3.2 Let (Xs)0≤s≤T be a given F ′θ(N ′)-valued, Ft-adapted continuous stochas-
tic process.

1. We define the generalized stochastic process

Yt =
∫ t

0

Xsds ∈ F ′θ(N ′)

by

L
(∫ t

0

Xsds

)
(ξ, p) :=

∫ t

0

(LXs)(ξ, p)ds,

where the right hand side integral is a Bochner integral. Moreover, Yt is differen-
tiable in F ′θ(N ′) and we have ∂

∂tYt = Xt.

2. Assume that there exists m ∈ (R∗+)2 and n ∈ N0 such that T ◦LXs ∈ Gθ∗,m(N−n)
and

P

(∫ T

0

|T ◦ LXs|2Gθ,m(N−n)ds < ∞

)
= 1, (13)

then the stochastic integral ∫ t

0

XsdBs ∈ F ′θ(N ′)
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is defined by

T
(
L
(∫ t

0

XsdBs

)
(ξ, p)

)
:=
∫ t

0

T ((LXs)(ξ, p)) dBs. (14)

Proof. The first part of the proposition is proved in [OS02, Proposition 11]. Concerning
the second part we notice that the mapping s 7→ T LXs ∈ Gθ∗,m(N−n) is continuous.
The condition (13) is sufficient for the existence of the stochastic integral (14), see for
example [DPZ92] or [Mét82]. The proposition is proved.

It follows that the processes(∫ t

0

XsdBs

)
t≥0

,

(∫ t

0

∂iXsdBs

)
t≥0

are F ′θ(N ′)-valued continuous local martingales. If Zt = (Z1
t , . . . , Zd

t ) is a Rd-valued
continuous Ft-semi-martingale it follows from the general theory that the above pro-
cesses with Zt replacing Bt are F ′θ(N ′)-valued continuous Ft-semi-martingales.

Remark 3.3 Let (Xs)0≤s≤T be a given F ′θ(N ′)-valued stochastic process such that the
stochastic integral with respect to Zt exists. Then for any ϕ ∈ Fθ(N ′) almost surely
we have 〈〈∫ t

0

XsdZs, ϕ

〉〉
=
∫ t

0

〈〈Xs, ϕ〉〉dZs.

In fact, choosing ϕ from {exp((ξ, p)), (ξ, p) ∈ N} which forms a total set in Fθ(N ′), we
have ∫ t

0

T 〈〈Xs, exp((ξ, p))〉〉dZs =
∫ t

0

T (LXs)(ξ, p)dZs

= T
((

L
∫ t

0

XsdZs

)
(ξ, p)

)
= T

〈〈∫ t

0

XsdZs, exp((ξ, p))
〉〉

.

On the other hand,∫ t

0

T 〈〈Xs, exp((ξ, p))〉〉dZs = T
∫ t

0

〈〈Xs, exp((ξ, p))〉〉dZs,

since the integral
∫ t

0
〈〈Xs, ϕ〉〉dZs is given by approximation and T is a topological iso-

morphism between Gθ∗(N ) and Gθ(N ′).

The following theorem is an adaptation of Corollary 2.2 of [RT03] in our framework.

Theorem 3.4 Let (Xt)t≥0 be a given Rr-valued continuous Ft-semi-martingale and
Φ ∈ F ′θ(Cr). Then τXt

Φ is an F ′θ(Cr)-valued continuous Ft-semi-martingale which has
the following decomposition

τXt
Φ = τX0Φ−

r∑
i=1

∫ t

0

∂i(τXs
Φ)dXi

s +
1
2

r∑
i,j=1

∫ t

0

∂2
ij(τXs

Φ)d〈Xi, Xj〉s

where 〈Xi, Xj〉t is the quadratic variation process between Xi
t and Xj

t , 1 ≤ i, j ≤ r.
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Proof. For Φ ∈ F ′θ(Cr) we have τXtΦ ∈ F ′θ(Cr). By Proposition 3.1 there exists m > 0
such that the mapping

g : Rr −→ Gθ,m(Cr), x 7→ g(x) := (T ◦ L)(τxΦ)

is twice continuously Fréchet differentiable and, therefore applying the Itô formula yields

g(Xt) = g(X0) +
r∑

i=1

∫ t

0

∂ig(Xs)dXi
s +

1
2

r∑
i,j=1

∫ t

0

∂2
ijg(Xs)d〈Xi, Xj〉s.

Then the result of the theorem follows from (11), (12) and applying (T ◦ L)−1. The
theorem is proved.

Proposition 3.5 Let Φ,Ψt ∈ F ′θ(Cr), t ≥ 0 be given, (Xt)t≥0 a Rr-valued continuous
Ft-semi-martingale and define Zt := exp∗(

∫ t

0
Ψsds). Then Ξt := τXt(Zt ∗ Φ) is a

continuous Ft-semi-martingale which has the following decomposition

Ξt = Ξ0 +
∫ t

0

Ψs ∗ Ξsds−
r∑

i=1

∫ t

0

∂iΞsdXi
s +

1
2

r∑
i,j=1

∫ t

0

∂2
ijΞsd〈Xi, Xj〉s.

Proof. Let Yt ∈ F ′θ(Cr), t ∈ [0, T ] be a given process of class C1 in F ′θ(Cr) and consider

f : [0, T ]× Rr −→ Gθ(Cr), f(t, x) := (T ◦ L)(τxYt).

In the same way as in Proposition 3.1 there exist m > 0 such that f : [0, T ] × Rr −→
Gθ,m(Cr) is of class C1 in t and of class C2 in x.

Applying the Itô formula gives

f(t,Xt) = f(0, X0) +
∫ t

0

∂tf(s,Xs)ds−
r∑

i=1

∫ t

0

∂if(s,Xs)dXi
s

+
1
2

r∑
i,j=1

∫ t

0

∂2
ijf(s,Xs)d〈Xi, Xj〉s.

For the case Yt = Zt ∗Φ we only need to show that ∂tf(s,Xs) = (T ◦L)(Ξs ∗Ψs). This
follows from the fact that ∂tZt = Ψt ∗ Zt by using the Laplace transform. Finally, the
result follows as in the previous theorem.

4. GENERALIZED FEYNMAN-KAC FORMULA

We consider the following Cauchy problem{
∂
∂tUt = 1

2∆Ut + Vt ∗ Ut

u0 = f.
(15)

The different terms in (15) are as follows: ∆ =
∑r

i=1
∂2

∂x2
i

is the Laplacian in the
generalized sense on Rr, the initial conditions f ∈ F ′θ(Rr) and Vt are F ′θ(Rr)-valued
continuous generalized functions.

The aim of this section is to give a probabilistic representation for the solution of the
Cauchy problem (15). Before we give two general lemmas. In the following β denotes
the Young function (eθ∗)∗.
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Lemma 4.1 Let Φ ∈ F ′β(Cr), x ∈ Rr be given such that T ◦L(τxΦ) ∈ Gβ,m(Cr). Then
there exist C(α, θ,m),m′ > 0 such that

|T ◦ L(∂i(τxΦ))|Gβ,m(Cr) ≤ C|T ◦ L(Φ)|Gβ,m′ (Cr)e
|x|2/α,

for any α > 0.

Proof. Since T is an isomorphism between Gβ∗(Cr) and Gβ(Cr) it is sufficient to show
that

|L(∂i(τxΦ))|Gβ∗,m(Cr) ≤ C|L(Φ)|Gβ∗,m′ (Cr)e
|x|2/α.

For any p ∈ Cr we have

|L(∂i(τxΦ))(p)| ≤ |L(Φ)(p)||p|e|p||x|.

Since the Young function θ verifies lim supu→∞
θ(u)
u2 < ∞, then there exist u0 > 0

and ε > 0 such that θ∗(u) ≥ εu2 for u ≥ u0. Hence β∗ = eθ∗ satisfies β∗(u) ≥ eεu2
, for

u ≥ u0.
Now we can easily see that there exist C > 0 and m′ with m > m′ > 0 such that

|p|e|x||p|e−β∗(m|p|) ≤ Ce−β∗(m′|p|)e|x|
2/α.

This implies the result.

Let us recall that if Φ ∈ F ′θ(Cr), we have exp∗(Φ) ∈ F ′β(Cr) with β = (eθ∗)∗, see for
example Lemma 6 in [OS02].

Lemma 4.2 Let f, Vt ∈ F ′θ(Cr) be such that the process Φt, t ∈ [0, T ] defined by

Φt :=
(

f ∗ exp∗
(∫ t

0

Vsds

))
has the property (T ◦ L)(Φt) ∈ Gβ,m(Cr). Then the following stochastic integral{∫ t

0

T ◦ L(∂i(τBs
Φs))dBi

s, t ≤ T

}
,

is a L2(P )-bounded martingale.

Proof. In order to prove the required martingale property it is sufficient to show
(cf. [KS91]) that there exists m > 0 such that

E

(∫ T

0

|T ◦ L(∂i(τBt
Φt))|2Gβ,m(Cr)dt

)
< ∞,

or equivalently

E

(∫ T

0

|L(∂i(τBtΦt))|2Gβ∗,m(Cr)dt

)
=
∫

Rr

∫ T

0

|L(∂i(τxΦt))|2Gβ∗,m(Cr)pt(x)dtdx < ∞,
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where pt(x) is the Gaussian density in Rr, i.e., pt(x) = 1
(2πt)r/2 e−|x|

2/2t. It follows from
Lemma 4.1 that for α > 2T we have∫

Rr

∫ T

0

|L(∂i(τxΦt))|2Gβ∗,m(Cr)pt(x)dtdx

≤ C

∫ T

0

|L(Φt)|Gβ∗,m′ (Cr)

∫
Rr

e|x|
2/αpt(x)dxdt

≤ C

2r/2

∫ T

0

1
(t( 1

2t −
1
α ))r/2

dt < ∞,

where C is a constant which change from line to line.

Theorem 4.3 The solution of the Cauchy problem (15) is given by

Ut = E x

(
τBt

(
f ∗ exp∗

(∫ t

0

Vsds

)))
,

where (Bt)t≥0 = (B1
t , . . . , Br

t ) is a Rr-valued Brownian motion with probability law P x

when starting at B0 = x ∈ Rr. E x denotes the expectation with respect to P x.

Proof. Let us denote by Θt, t ≥ 0 the process

Θt := τBt

(
f ∗ exp∗

(∫ t

0

Vsds

))
.

At first we notice that L
(
f ∗ exp∗

(∫ t

0
Vsds

))
can be extended to an entire function on

Cr which satisfies the estimate∣∣∣∣L(f ∗ exp∗
(∫ t

0

Vsds

))
(p)
∣∣∣∣ ≤ Ceβ∗(m|p|), ∀p ∈ Cr

which implies that f ∗ exp∗
(∫ t

0
Vsds

)
∈ Gβ∗(Cr), cf. Remark (2) in [GHOR00]. Since

B is a Rr-valued Brownian motion, then 〈Bi, Bj〉 = 0 for i 6= j. It follows from
Proposition 3.5 that the process Θt has the following decomposition

Θt = f −
r∑

i=1

∫ t

0

∂iΘsdBi
s +

1
2

r∑
i=1

∫ t

0

∂2
iiΘsds

+
∫ t

0

Vs ∗Θsds.

Taking expectation in the the above equality, and the fact that the stochastic integral
is a martingale, cf. Lemma 4.2, yields

Ut = f +
1
2

r∑
i=1

∫ t

0

∂2
i Usds +

∫ t

0

Vs ∗ Usds,

which satisfies the Cauchy problem (15). The theorem is proved.
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Now we consider the heat equation with stochastic potential
∂
∂tXt = 1

2∆Xt + Vt ∗Xt

X0 = f,
(16)

where Xt, f ∈ F ′θ(M′), t ≥ 0 is the time parameter and ∆ =
∑r

i=1
∂2

∂x2
i

is the Laplacian
in the generalized sense on Rr, ω = (ω1, . . . , ωd) is the stochastic vector variable in
the tempered Schwartz distribution space S′(R, Rd), d ∈ N, and ∗ is the convolution
product between generalized functions on F ′θ(S′(R, Rd)⊗ Rr).

In order to solve the Cauchy problem (16) we only need to adapt the result of
Proposition 3.1. To this end, we consider

g : Rr −→ Gθ(N ′), g(x) := (T ◦ L)(τ(0,x)Φ), Φ ∈ F ′θ(N ′).

Then there exists m ∈ (R∗+)2 and n ∈ N0 such that g : Rr −→ Gθ,m(N−n) is twice
continuously differentiable and

g′(x)(h) = −
r∑

i=1

(T ◦ L)(∂iτ(0,x)Φ)hi

g′′(x)(h⊗ h) =
r∑

i,j=1

(T ◦ L)(∂2
ijτ(0,x)Φ)hihj .

The next theorem can be shown in the same way as Theorem 4.3.

Theorem 4.4 There exists a unique generalized stochastic process Xt which solves the
Cauchy problem (16), namely

Xt = Ẽ
x
(

τ(0,B̃t)

(
f ∗ exp∗

(∫ t

0

Vsds

)))
, (17)

where B̃t, t ≥ 0 is a Rr-valued Brownian motion starting at B̃0 = x ∈ Rr.

Next we will study a modification of the Cauchy problem (16). More precisely, we
consider 

∂
∂tXt = 1

2∆Xt + Ht ∗ ∇Xt

X0 = f, t ∈ [0, T ].
(18)

where f ∈ F ′θ(M′), Ht ∈ F ′θ2
(S′d) and the convolution product ∗ concerns only with

the distributional variable ω ∈ S′d. Clearly, the Laplacian ∆ and the gradient ∇ in the
generalized sense is with respect to the spatial variable x ∈ Rr. Applying the Laplace
transform L1 (cf. Remark 2.7) to (18) we obtain

∂
∂t (L1Xt)(ξ) = 1

2∆(L1Xt)(ξ) + (L1Ht)(ξ)∇(L1Xt)(ξ)

(L1X0)(ξ) = (L1f)(ξ), ξ ∈ Sd.
(19)

Notice that, L1f ∈ F ′θ1
(Rr), in other words, generalized functions in the spatial variable.

In order to solve (19) we consider a Rr-valued continuous semi-martingale, namely

dYt = dBt + (L1Ht)(ξ)dt,
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where Bt is a Brownian motion with probability law P x when starting at B0 = x ∈ Rr.
The solution of (19) is given by the generalized Feynman-Kac formula as (cf. Theo-
rem 4.3)

(L1Xt)(ξ) = E x
(
τ(0,Yt)(L1f)(ξ)

)
.

Using the Girsanov transformation the semi-martingale Yt, t ≥ 0 is a Brownian
motion with respect to the Probability measure P̃ x such that

dP̃ x

dP x
= exp

(
−
∫ t

0

(L1Hs)(ξ)dBs −
1
2

∫ t

0

(L1Hs)2(ξ)ds

)
.

Hence, the solution (L1Xt) becomes

(L1Xt)(ξ) = E P̃ x

((
τ(0,Yt)(L1f)(ξ)

)
exp

(∫ t

0

(L1Hs)(ξ)dYs −
1
2

∫ t

0

(L1Hs)2(ξ)ds

))
.

On one hand, we notice that L1Xt may be extended to an entire function on the
complexification of Sd and therefore LXt is an entire function on N . Moreover, using
the estimate ∣∣∣∣exp

(∫ t

0

(L1Hs)(ξ)dYs −
1
2

∫ t

0

(L1Hs)2(ξ)ds

)∣∣∣∣
≤ exp

(∫ t

0

Re(L1Hs)(ξ)dYs −
1
2

∫ t

0

(Re(L1Hs)(ξ))2ds

)
× exp

(
1
2

∫ t

0

(Im(L1Hs)(ξ))2ds

)
and the fact that Lf ∈ Gθ∗(N ), L1Ht ∈ Gθ∗2

(Cr) there exist m ∈ (R∗+)2, n ∈ N0 such
that

|(LXt)(ξ, p)|

≤ |(Lf)(ξ, p)| exp
(

1
2

∫ t

0

(Im(L1Hs)(ξ))2ds

)
×E P̃ x

(
|e(p,Yt)| exp

(∫ t

0

Re(L1Hs)(ξ)dYs −
1
2

∫ t

0

(Re(L1Hs)(ξ))2ds

))
≤ |(Lf)(ξ, p)| exp

(
1
2

∫ t

0

|(L1Hs)(ξ)|2ds

)(
E P̃ x

e2Re(p,Yt)
)1/2

≤ |(Lf)(ξ, p)| exp
(

1
2

∫ t

0

|(L1Hs)(ξ)|2ds

)
e|p|

2T

≤ Ceβ∗(m|(ξ,p)|n).

This implies that LXt ∈ Gβ∗(N ), cf. Remark (2) in [GHOR00].
Finally, the solution of (18) is given applying the inverse Laplace transform. We have

proved the following theorem.

Theorem 4.5 There exists a unique generalized stochastic process Xt which solves the
Cauchy problem (18), namely

Xt = E P̃ x

(
(τ(0,Ys)f) ∗ exp∗

(∫ t

0

HsdYs −
1
2

∫ t

0

H∗2
s ds

))
,

where Yt, t ≥ 0 is a Rr-valued Brownian motion starting at Y0 = x ∈ Rr.
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