
   
Abstract—The work reported in this article concerns the 
temperature control loop of a reduced scale prototype kiln. 
The kiln’s characteristics are studied and presented.  
Non-linearity and noise are two characteristics of the plant as 
far as control is concerned. Direct and inverse models of the 
kiln are implemented using Feedforward Neural Networks 
and using these models Direct Inverse Control, Additive 
Feedforward Control and Internal Model Control are 
implemented and their results compared. These structures 
provided from classical control are used almost unchanged 
except for Internal Model Control, which needs to be adapted. 
Details about this implementation are given. The utility of 
each of the control strategies is outlined in the conclusions. 
  
Index Terms— Feedforward Neural Networks, Direct Inverse 
Control, Additive Feedforward Control, Internal Model 
Control and Measurement Noise. 
 

I. INTRODUCTION 

The field of Neural Networks (NN) has known different 
stages of development. One of the most important steps was 
achieved when Cybenko [2] proved that they could be used 
as universal approximators.  A negative stage was brought 
by the book of Minsky and Papert called Perceptrons[9], 
where among other examples it was shown that a single 
layer of perceptrons could not represent a simple function 
like the Exclusive OR. This negative phase was overcome 
when algorithms for training of multilayer NN where 
proposed in the decade of the 80s. 
Since then much work has been done regarding NN and 
their aplication to many different fields. 
A reasonable slice of this work has been in the modelling 
and control field where NN hold the promise of being 
capable of producing non-linear models and controllers, 
being able to work under noise conditions and being fault 
tolerant to the loss of neurons. 
Many theoretical results have been presented regarding 
systems without noise and many others regarding systems 
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with simulated noise, but it still remains work to be done 
applying NN to real systems with noise and this is where 
the present work fits. 
The system under control is a reduced scale prototype kiln 
and the work reported concerns the implementation of the 
temperature control loop. The modelling of this kiln is part 
of an interdepartmental project at the University of Aveiro, 
which will lead to the control of the atmosphere inside the 
kiln using one loop for temperature control and another for 
air/oxygen ratio control. 
The kiln’s characteristics are studied and presented. Direct 
and inverse models of the kiln are implemented with 
Feedforward Neural Networks (FNN) and using these 
models Direct Inverse Control, Additive Feedforward 
Control and Internal Model Control are tested and their 
results compared. The utility of each of the strategies is 
outlined in the conclusions. 
 

II. THE SYSTEM 

Non-linearity and noise have always been a major problem 
in control systems. Kilns are non-linear systems because 
their temperature does not depend only on the heating 
control variable but also on the exchange of heat with the 
exterior world and the present system also has measurement 
noise because of the type B thermocouple used. 
The system is composed of a kiln, electronics for signal 
conditioning, power electronics module, cooling system and 
a Data Logger from Hewlett Packard HP34970A to 
interface with a Personal Computer (PC) connected as can 
be seen in figure 1. 
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 Fig. 1. Schematic of the modules composing the system.  
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Through the Data Logger bi-directional information is 
passed: control signal in real-time supplied by the controller 
and temperature data for the controller. The temperature 
data is obtained using a thermocouple. 
 

 
 
Fig. 2. Picture of the power module. 
 
The power module, which can be seen in figure 2, receives 
a signal from the controller implemented in the Personal 
Computer (PC), which ranges from 0 to 4.095V and 
converts this signal in a power signal of 220V applied 
during a period of time proportional to the input signal. 
The Data Logger is used as the interface between PC and 
the rest of the system. 
Since the Data Logger can be programmed using a protocol 
called Standard Commands for Programmable Instruments 
(SCPI), a set of functions have been developed to provide 
MATLAB with capability to communicate through the RS-
232C port to the Data Logger.  
 

 
 
Fig. 3. Picture of the kiln and electronics. 

 
Using the HP34902A and HP34907A modules together 
with the developed functions it is possible to read and write 
values, analog or digital from MATLAB. The first module 

provides 16 analog inputs and the second provides digital 
inputs and outputs and two Digital to Analog Converters.  
A picture of the system can be seen in figure 3. The kiln can 
be seen in the centre and at the lower half the prototypes of 
the electronic modules and the cooling fans. 
 

III. IDENTIFICATION 

Starting from the characteristics already identified about 
this system: non-linearity and noise, the use of Neural 
Networks seemed to be straightforward and FNN were used 
because their simplicity and powerful algorithms available 
for training. The use of past samples of input and output 
provides a memory effect in FNN that enlarges their field of 
use. 
Because of the measurement noise all the data was filtered 
using a simple first order filter with multiple iterations. 
Care was taken to avoid phase distortion and to choose 
appropriate cut-off frequency. 
To proceed for the identification phase the data to be used 
had to fulfil one requisite: frequency and amplitude 
spectrum wide enough [3].  
With this concern direct and inverse models for the system 
were produced using Feedforward Neural Networks (FNN) 
of one hidden layer, with linear output and Auto-Regressive 
with eXogenous input (ARX) architectures.  
Many structures have been proposed for training [5], [6], 
[16] and [17], mostly for inverse models. In the present 
work the structures used are depicted in the block diagrams 
that can be seen in figures 4 and 5 because of their 
simplicity. 
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Fig. 4. Forward model training block diagram. 

 
The lag space was analysed searching for correlations and 
two regressors of output and input were used. 
As there is no rule to determine the ideal number of neurons 
in the hidden layer, a wide range was tested to search for 
the best solution. The best solutions were obtained using 
four neurons for the direct model and five for the inverse 
model. 
The models were trained with Levenberg-Marquardt 
algorithm because of its fastest convergence. 
When the quality of the models was considered to be 
“good”, the models were used for inverse control 
simulation and later used in the control strategies presented 
in the next section. 
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Fig. 5. Inverse model training block diagram. 

 
One common problem that arises during training is 
overtraining or overfitting. This corresponds to having the 
FNN modelling not only the features of the system but to an 
undesirable extent also the noise [16].  
The overtraining problem has been an open topic for 
discussion motivating the proposal of several techniques 
like Regularization [12], Early stopping [14] and pruning - 
Optimal Brain Damage [11] and Optimal Brain Surgeon 
[10]. In the present work both models were trained using 
early stopping. 
During the identification and control tasks the NNSYSID  
[4] and NNCTRL [5] toolboxes for MATLAB were used.  
 

IV. CONTROL STRUCTURES 

The control structures used in the present work are: Direct 
Inverse Control, Additive Feedforward Control and Internal 
Model Control.  

A. Direct Inverse Control (DIC).  

Direct inverse control is the simplest solution for control 
that consists of connecting in series the inverse model and 
the plant as can be seen in figure 6.  
 

 
Fig. 6. Structure for Direct Inverse Control. The signal 
r(k) is the reference, u(k) the control signal and y(k) the 
output signal. 
 
Considering that the Plant’s behaviour is described by P(k) 
and I(k) describe the inverse model, the relation between 
input r(k) and output y(k) is: 
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using H(k) to note the transfer function: 
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Thus the output y(k) will only follow the reference signal 
r(k) if I(k) is an accurate inverse of P(k). 

B. Additive Feedforward Control (AFFC).  

The principle of additive feedforward control is quite 
simple: add to an existing (but not satisfactory functioning) 
feedback controller an additional inverse process controller. 
The principle of AFFC is illustrated in figure 7. 
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Fig. 7. Structure for Additive Feedforward Control.  
 
The additive feedforward control strategy offers the 
following important advantages [7]:  
• Data collecting can be done using the existing closed 

loop, avoiding plant stopping for data collection and 
facilitating the access to good quality data.  

• There is no need for opening the existing control loop 
nor during training neither during the introduction of 
the additive controller. 

 
The condition for AFFC to work properly is the same 
needed in DIC: the inverse model needs to be accurate.  

C. Internal Model Control (IMC) 

Internal Model Control is a structure that allows the error 
feedback to reflect the effect of disturbance and plant 
mismodelling.  
From the block diagram of figure 8 it is possible to derive 
the following expression (considering the Direct model 
described by D(k)): 
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Since y(k)=H(k).r(k), if the Direct and Inverse model have 
a good matching I(k).D(k) equals 1 and H(k) reduces to 1, 
making y(k)=r(k). The conclusion is that in IMC a good 
match between forward and inverse models is enough to 
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have good control. It can also be shown that IMC reduces 
disturbance’s influence. 
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Fig. 8.  Structure for Internal Model Control. The signal 
r(k) is the reference, u(k) the control signal, y(k) the output 
signal, yhat(k) the estimate of the output and e(k) the error 
between the output and the estimate. 

D. Adapting the Control Structures to use Neural 
Networks Models. 

The need for NNs arises when dealing with non-linear 
systems for which the linear controllers and models do not 
satisfy and the use of structures provided by classical 
control theory seems a straightforward strategy. 
The structures presented in the sections A and B can be 
used with NN models without the need of major changes, 
but the structure used in section C needs some refinements 
to work properly[8]. 
According to the conclusions extracted from equation 4, the 
models need to match, that is the inverse model should be 
the inverse of the forward model instead of the inverse of 
the system. The forward model is implemented according to 
the following equation:  
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And the inverse model:  
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Where ny is the number of previous output samples used, nu 
is number of previous control signal samples used and td is 
the time delay of the system. The block diagram of the 
resulting control loop can be seen in figure 9. 
This matching between the models would normally point 
out to specialized training, though in the present work the 
better results where achieved with normal training as 
depicted in figure 5. 
 

V. THE REAL TIME CONTROL ACTION 

The three proposed control strategies were implemented 
according to the details given in the previous sections and 
the results can be seen in figures 10 to 12. 
The summary of the results is shown in table 1 in the form 
of Mean Square Error (MSE) for an easier comparison. The 
first column shows the error over the entire set point. It is 
worth to mention that the training data starts at 300ºC and 
therefore the computation of the first samples in the NN is 
done without past information. The other two columns refer 
to partial evaluations of the MSR. 
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Fig. 9. Internal Model Control structure with detail of the implementation of inverse and direct model. 
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Fig. 10. Direct Inverse Control results. 
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Fig. 11. Additive Feedforward Control results. 
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Fig. 12. Internal Model Control results. 
 
 

 
 
CONTROL TYPE TOTAL POINTS 

30 TO 200 
POINTS 
80 TO 200 

DIC 9,67 4.62 1.97 
AFFC 6.70 2.97 1.56 
IMC 9.83 2.28 0.85 

Table 1.  Mean Square Error for the proposed strategies. 
 

VI. CONCLUSIONS 

The behaviour of FNNs is not the same when dealing with 
noisy data: training must be shorter since less accurate 
information can be extracted from data, higher absolute 
error should be expected and the final quality of the 
controller is not the same as without noise. Filtering and 
early stopping were used to deal with this problem. 
The measurement noise has a random characteristic, but for 
the present system its effect is more severe when building 
the inverse model because a small difference in a sample of 
the temperature measurement would require an important 
change in the input. 
AFFC was implemented using an existing PI controller 
tuned manually. The interest here is to show that even with 
a non-optimised controller AFFC performs well.  
DIControl and AFFC strategies achieved interesting results 
and therefore the conclusion that the quality of the inverse 
model is good can be extracted. The results for IMC hold 
the best performance except for the first values where the 
lack of data lower than 300ºC seems to be more harmful for 
this type of control.  
 
All the control strategies have an interesting side: 
• Direct Inverse Control is the simplest strategy to 

implement. 
•  Additive Feed Forward Control’s most important 

utility is to allow for improving an existing control 
loop without needing for stopping normal operation. 

• Internal Model Control forms a more robust control 
loop an thus presents better results from Mean Square 
Error point of view. 

Internal Model Control strategy forms a very stable loop 
that as can be seen from the present example performs 
better than strategies that don’t include feedback. IMC 
presents a handicap though for hardware implementations 
where space is an important factor: two models instead of 
one have to be implemented. 
Future work will concern implementing the air/oxygen 
control loop, implementing the controller in low cost micro 
controllers and study other possibilities for hardware 
implementation of the controllers. 
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