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Abstract 

Nonlinearity and noise have always been a major 
problem for control systems. The majority of classical 
controllers fail to achieve good control performance 
under these conditions. Proportional Integral 
Differential controllers constitute on the other hand a 
rule of thumb for controlling systems almost 
independently of the mentioned problems. 
The present article describes an application of 
temperature control for a reduced scale prototype kiln 
where two different solutions are proposed: an Internal 
Model Control using Neural Networks and a PID tuned 
using a Genetic Algorithm with a Neural Network 
model of the plant. 
Both solutions lead to very good control performance 
though the PID optimisation is dependent of the 
reference used while the Neural Network due to its 
generalization capabilities is independent of the signal 
used for training as long as the signal has enough 
information about the system being modelled. 
The availability of the Neural Network model is crucial 
for both solutions: for implementing the stable feedback 
control loop of Internal Model Control and for 
optimising the PID parameters with a Genetic 
Algorithm.  
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1. Introduction 

Nonlinearity and noise have always been a major 
problem in control systems. The majority of classical 
controllers fail to achieve good control performance 
under these conditions. Proportional Integral 
Differential controllers constitute on the other hand a 

rule of thumb for controlling systems almost 
independently of the mentioned problems. 
The present article describes an application of 
temperature control for a reduced scale prototype kiln 
where two different solutions are proposed. 
The first one uses a PID controller whose parameters 
are tuned using a Genetic Algorithm (GA). The fitness 
measure is given by testing the PID in a Neural 
Network (NN) model of the kiln. 
The second solution is the classical Internal Model 
Control implemented using Neural Networks. 
 
The field of NNs has known different stages of 
development. One of the most important steps was 
achieved when Cybenko [1] proved that they could be 
used as universal approximators.  Other important steps 
were taken by developing suitable algorithms for 
training NN like backpropagation and the adaptation of 
the Levenberg-Marquardt algorithm to use with NN. 
A reasonable slice of this work has been done in the 
modelling and control field where NN hold the promise 
of being capable of producing non-linear models and 
controllers, being able to work under noise conditions 
and being fault tolerant to the loss of neurons. 
Many theoretical results have been presented regarding 
systems without noise and many others regarding 
systems with simulated noise, but it still remains work 
to be done applying NN to real systems with noise.  
 
Genetic Algorithm (GA) or Genetic searching 
algorithm is a function optimisation technique based on 
the principles of evolutionary genetics and the natural 
selection process [2] after the pioneering work of 
Holland [3]. 
The original goal was to study the adaptation 
phenomena in nature, but his work was later used for 



optimisation techniques based in a fitness function, 
corresponding to the survival of the fittest principle. 
Since the initial work many new operators have been 
proposed and many improvements were introduced but 
crossover, mutation and elitism are solutions that are 
present in almost any aplication of GA for optimisation.  
Crossover originates a new member for the population, 
by a process of mixing genetic information from both 
parents and raises the question of how to select the 
parents for a fastest growing of the fitness of the 
population. Among many other solutions, the selection 
can be done with the roulette method, by tournament, 
random and elitist [3] [4]. 
Mutation is a process by which a percentage of the 
genes are selected in a random fashion and changed. 
Elitism corresponds to keeping the best members of the 
population to the next generation to guarantee that 
there is a continuous maximization of the fitness 
function.  
GA optimisation is especially useful when there is no 
deterministic solution for the problem or the range of 
solutions is too wide for an exhaustive search and local 
minimum can be acceptable. It is also important that 
this is a global optimisation method. 
 

2. The Plant 
The plant under control is a reduced scale prototype 
kiln and the work reported concerns the 
implementation of the temperature control loop. The 
modelling of this kiln is part of an interdepartmental 
project at the University of Aveiro, which will lead to 
the control of the atmosphere inside the kiln using one 
loop for temperature control and another for air/oxygen 
ratio control.  
 

 
 

Fig. 1. Picture of the kiln and electronics. 
 
An electrical resistor driven by a power controller heats 
the kiln and the temperature is measured by a B type 
thermocouple. The sensor and the actuator are 

connected to a Hewlett Packard HP34970A Data 
Logger that supplies real-time data to MATLAB using 
the RS232C serial line. The Data Logger though a 
helpful tool limits the measurement to temperatures 
superior to 300ºC and the thermocouple introduces 
measurement noise, which makes identification more 
complex. This approach allows the use of the entire 
MATLAB powerful environment together with real-
time capability.  
The kiln is completely closed as can be seen in figure 1 
which is an outside view. This kiln operates around 
750ºC having as superior limit of operation 1000ºC. 
 A schematic view of the kiln can be seen in figure 2. 
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 Fig. 2. Schematic view of the kiln. 

 
3. Identification 

The first issue to deal with is which way to use to 
collect data. Open loop data is usually used, though in 
some situations closed loop data might be preferred 
since the plant is kept inside the range in which it is 
intended to operate [7]. The latter solution brings the 
problem of correlation between input and output, which 
might lead to the loss of system identifiability [10]. 
The data used for the identification was open loop data 
in which the control signal was produced in order to 
cover the entire operating range.  
Since the kiln is nonlinear, one of the concerns was to 
have an amplitude spectrum of the input signal wide 
enough to allow for correct nonlinear identification[10]. 
The sampling period used was of 30s.  
Direct and Inverse models were trained according to 
details given in [11].  
During the identification and control tasks the 
NNSYSID [8] and NNCTRL [9] toolboxes for 
MATLAB were used.  

 
4. The Internal Model Control Loop 

using Neural Networks 
Internal Model Control (IMC) is a structure that allows 
the error feedback to reflect the effect of disturbance 
and plant mismodelling. In fact it can be shown that a 
good match between forward and inverse models is 
enough to have good control and with this structure 
disturbance’s influence is also reduced. 
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Fig. 3.  Structure for Internal Model Control. The 
signal r(k) is the reference, u(k) the control signal, y(k) 
the output signal, yhat(k) the estimate of the output and 
e(k) the error between the output and the estimate. 
 

Adapting Internal Model Control Structure to use 
Neural Networks Models. 
The need for NNs arises when dealing with non-linear 
systems for which the linear controllers and models do 
not satisfy and the use of structures provided by 
classical control theory seems a straightforward 
strategy. 
Some of structures adopted from classical control can 
be used directly with NN models, but IMC needs some 
refinements to work properly [12]. 
The good match between forward and inverse models, 
referred above translates to having the forward model 
outputs feedback to the input of the inverse and direct 
model instead of the outputs of the plant. This means 
that the inverse model will implement the following 
equation: 
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








+−−−

+−+
=

)1(),...,(

)1(),...,(),1(
)(

dud

y

tnkutku

nkykykr
gku  

 
Where ny is the number of previous output samples 
used, nu is number of previous control signal samples 
used and td is the time delay of the system.  
The IMC structure resulting from the first equation can 
be seen in figure 4. 
In the present work IMC structures were tested with 
and without these adaptations. The direct translation of 
the classical IMC worked like Direct Inverse Control 
and in the presence of disturbances was unable to 

recover, while with these changes IMC works properly 
as can be seen in section 7. 
 

5. Proportional Integral Differential 
Controller Optimisation 

The optimisation of the Proportional Integral 
Differential (PID) controller was done through the use 
of a genetic algorithm that uses a NN model of the 
plant. For each individual in the population used in the 
genetic search a control loop is implemented using the 
parameters for the PID and the model of the plant. 
Provided a reference for the control loop, the fitness of 
the solution is the Mean Square Error obtained between 
the output and the reference. The fittest solution is the 
one with the lower fitness value.  
The algorithm implemented includes Crossover, 
Mutation and Elitism but several changes were 
introduced. 
Using a small population, a strong elitism of 25% is 
assumed, crossover of one site splicing is performed. 
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Fig. 4. Internal Model Control structure with detail of the implementation of inverse and direct model. 



and all the members are subjected to mutation except 
the elites. 
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Fig. 5. Control loop implemented during the genetic 
optimisation of the PID controller.  

 
The mutation operator is a binary mask generated 
randomly according to a selected rate that is superposed 
to the existing binary codification of the population 
changing some of the bits according to a predefined 
rate. 
 
Improvements Introduced in the Algorithm 
Two changes were introduced in the algorithm in order 
to improve the convergence. The first one regards the 
crossover: 50% of the population, including the elites is 
randomly selected with equal opportunity. The second 
one concerns picking the lower bits of the weighs’ 
codification in the fittest members and change them 
adding or subtracting a small binary amount in order to 
verify the neighbourhood for a solution better than the 
present one. The backpropagation algorithm itself 
inspired this improvement since checking the 
neighbourhood of the present solution might lead to a 
lower value of the error that is difficult to obtain with 
the random character of the genetic search. These 
refinements though similar in some points to the ones 
presented in [2] were developed independently. 
Due to the reduced number of parameters of the PID 
controller and the improvements introduced, in few 
generations the solutions converge and the optimisation 
is terminated.  
It is worth to note that the integral gain ki in the several 
optimisations performed is always zero or a very small 
value. This can have a physical interpretation: because 
of the integral behaviour of the kiln, the integral action 
is not needed. 
 

6. Modelization of the Plant 
After the identification task, input and output sets of 
data are produced and will be split in to training and 
test sets. Both sets will be scaled removing their mean 
and divided by their standard deviation. The training 
set is used for teaching the NN while the test set serves 
to test the quality of the model obtained. 
An Auto-Regressive with eXogenous input (ARX) 
model was chosen and the Levenberg-Marquardt 
algorithm was used for training the NN because of its 
fastest convergence. Because of the measurement noise 
all the data was filtered using a simple first order filter 

with multiple iterations. Care was taken to avoid phase 
distortion and to choose appropriate cut-off frequency. 
The lag space was analysed searching for correlations 
and two regressors of output and input were used. 
Several architectures of the NN were tested and the best 
results were obtained using four neurons on the hidden 
layer of the direct model and five neurons on the hidden 
layer of inverse model, both models have a linear 
output neuron. 
In figures 6 and 7 the response of forward and inverse 
models to the test sets is presented. 
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Fig. 6. Forward model’s response to test sequence and 
error between output and prediction.  
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Fig. 7. Inverse model’s response to test sequence and 
error between control signal and prediction.  

 
The quality of the inverse model is inferior to the direct 
model. This is mainly because of the use of filtering, 
which in some situations diminishes the connection 
between input and output signal. This situation is more 



severe to the inverse model since to the direct model the 
kiln itself acts as a low pass filter.  
The error is small, except for some “glitches” that 
appear in situations where the filtering makes it 
difficult for the models to “understand” the relation 
between input and output. With this procedure a 
detuned model is obtained. This detuned model is better 
than the model obtained directly from the noisy data 
and both forward and inverse models detuned form a 
good match that is necessary for the IMC to work 
properly. 
 

7. The Real Time Control Action 
In this stage the solutions prepared to control the 
temperature loop are tested using the plant and the 
results are collected. 
For the experiences performed with the PID controller 
different ranges and set points were tested. Table 1 
summarizes the results and the best result achieved 
corresponding to experience 5, is shown in figure 8. 
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Fig. 8. Best performance obtained with PID Control. 
 

Comparing the results presented in table 1 there are 
some facts that are worth to point out: Ki is always zero 
or very small, which confirms the integral 
characteristic of the kiln, the PID optimisation is 
dependent of the reference used during the optimisation 
process. 
In table 2 a comparison between the results obtained 
with the PID and the IMC is summarized.  
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Fig. 9. Internal Model Control results. 
 

Control 
strategy 

MSE  
(total) 

MSE  
(points 80 to 200) 

IMC 8.07 0.74 
PID 5.87 0.86 

 
Table 2.- Comparison between the two control 

strategies. 
 

8. Conclusions 
The use of Neural Networks is crucial to both solutions 
implemented: Internal Model Control is implemented 
using forward and inverse models of the plant and the 
Proportional Integral Differential controller is 
optimised using a Neural Network model of the plant. 
This last solution could not be implemented directly 
using the plant because the temperature could go 
outside the safe operating range. 
From the results shown in table 1 it can be concluded 
that the PID optimisation is dependent on the “training 
signal” which is in fact the reference used for the 
optimisation. On the contrary NN performance is quite 
independent of the training signal, requiring only that 
the signal used has enough information about the 
system and refers to the operating range of the plant as 
much as possible. 
Comparing the results obtained from the two control 
strategies presented in table 2 it can be seen that IMC 
shows more difficulties in the initial phase where the 
NN controller needs past information about inputs and 
outputs that is not available, but after this stage 
performs better than the PID controller. 
Both situations show the utility of FNN in modelling 
and control. 
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EXPERIENCE  
NUMBER 

RANGE OF 
PARAMETERS 

PARAMETER  
VALUE 

TRAINING 
SIGNAL 

SET POINT 
TYPE 

MSE 
. 

1 0 to 10 Ki=0.05  Kp=10  Td=9.96 ramp+stable ramp+stable 47.86 

2 0 to 10 Ki=0  Kp=10  Td=10 NNID ramp+stable 91.84 

3 0 to 25 Ki=0.004  Kp=25  Td=25 ramp+stable ramp+stable 13.83 

4 0 to 25 Ki=0  Kp=25  Td=25 NNID ramp+stable 17.28 

5 0 to 100 Ki=0  Kp=65.49  Td=5.88 ramp+stable ramp+stable 5.87 

6 0 to 100 Ki=0  Kp=68.63  Td=5.49 NNID ramp+stable 6.34 

 
Table 1.  Control essays with the plant for different PID optimizations. The NNID signal is the signal used for 

training the Neural Network and MSE is the Mean Squared Error. 


